Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Condens Matter ; 32(44): 445002, 2020 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-32521520

RESUMO

For surface-mediated processes in general, such as epitaxial growth and heterogeneous catalysis, a constant slope in the Arrhenius diagram of the rate of interest, R, against inverse temperature, log R vs 1/T, is traditionally interpreted as the existence of a bottleneck elementary reaction (or rate-determining step), whereby the constant slope (or apparent activation energy, [Formula: see text]) reflects the value of the energy barrier for that elementary reaction. In this study, we express [Formula: see text] as a weighted average, where every term contains the traditional energy barrier for the corresponding elementary reaction plus an additional configurational term, while identifying each weight as the probability of executing the corresponding elementary reaction. Accordingly, the change in the leading (most probable) elementary reaction with the experimental conditions (e.g. temperature) is automatically captured and it is shown that a constant value of [Formula: see text] is possible even if control shifts from one elementary reaction to another. To aid the presentation, we consider kinetic Monte Carlo simulations of submonolayer growth of Cu on Ni(111) and Ni on Cu(111) at constant deposition flux, including a large variety of single-atom, multi-atom and complete-island diffusion events. In addition to analysing the dominant contributions to the diffusion constant of the complete adparticle system (or tracer diffusivity) and its apparent activation energy as a function of both coverage and temperature for the two heteroepitaxial systems, their surface morphologies and island densities are also compared.

2.
ACS Nano ; 14(6): 7269-7279, 2020 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-32413259

RESUMO

Understanding the nucleation and growth kinetics of thin films is a prerequisite for their large-scale utilization in devices. For self-assembled molecular phases near thermodynamic equilibrium the nucleation-growth kinetic models are still not developed. Here, we employ real-time low-energy electron microscopy (LEEM) to visualize a phase transformation induced by the carboxylation of 4,4'-biphenyl dicarboxylic acid on Ag(001) under ultra-high-vacuum conditions. The initial (α) and transformed (ß) molecular phases are characterized in detail by X-ray photoemission spectroscopy, single-domain low-energy electron diffraction, room-temperature scanning tunneling microscopy, noncontact atomic force microscopy, and density functional theory calculations. The phase transformation is shown to exhibit a rich variety of phenomena, including Ostwald ripening of the α domains, burst nucleation of the ß domains outside the α phase, remote dissolution of the α domains by nearby ß domains, and a structural change from disorder to order. We show that all phenomena are well described by a general growth-conversion-growth (GCG) model. Here, the two-dimensional gas of admolecules has a dual role: it mediates mass transport between the molecular islands and hosts a slow deprotonation reaction. Further, we conclude that burst nucleation is consistent with a combination of rather weak intermolecular bonding and the onset of an additional weak many-body attractive interaction when a molecule is surrounded by its nearest neighbors. In addition, we conclude that Ostwald ripening and remote dissolution are essentially the same phenomenon, where a more stable structure grows at the expense of a kinetically formed, less stable entity via transport through the 2D gas. The proposed GCG model is validated through kinetic Monte Carlo (kMC) simulations.

3.
Phys Chem Chem Phys ; 17(40): 26599-606, 2015 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-26250099

RESUMO

First-principles calculations within the framework of real-space time-dependent density functional theory have been performed for the complete chlorophyll (Chl) network of the light-harvesting complex from green plants, LHC-II. A local-dipole analysis method developed for this work has made possible the studies of the optical response of individual Chl molecules subjected to the influence of the remainder of the chromophore network. The spectra calculated using our real-space TDDFT method agree with previous suggestions that weak interaction with the protein microenvironment should produce only minor changes in the absorption spectrum of Chl chromophores in LHC-II. In addition, relative shifting of Chl absorption energies leads the stromal and lumenal sides of LHC-II to absorb in slightly different parts of the visible spectrum providing greater coverage of the available light frequencies. The site-specific alterations in Chl excitation energies support the existence of intrinsic energy transfer pathways within the LHC-II complex.


Assuntos
Clorofila/química , Cor , Viridiplantae/química , Modelos Moleculares , Fenômenos Ópticos , Teoria Quântica
4.
Phys Chem Chem Phys ; 17(47): 31371-96, 2015 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-25721500

RESUMO

Real-space grids are a powerful alternative for the simulation of electronic systems. One of the main advantages of the approach is the flexibility and simplicity of working directly in real space where the different fields are discretized on a grid, combined with competitive numerical performance and great potential for parallelization. These properties constitute a great advantage at the time of implementing and testing new physical models. Based on our experience with the Octopus code, in this article we discuss how the real-space approach has allowed for the recent development of new ideas for the simulation of electronic systems. Among these applications are approaches to calculate response properties, modeling of photoemission, optimal control of quantum systems, simulation of plasmonic systems, and the exact solution of the Schrödinger equation for low-dimensionality systems.

5.
J Comput Chem ; 35(6): 427-44, 2014 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-24249048

RESUMO

We present an analysis of different methods to calculate the classical electrostatic Hartree potential created by charge distributions. Our goal is to provide the reader with an estimation on the performance-in terms of both numerical complexity and accuracy-of popular Poisson solvers, and to give an intuitive idea on the way these solvers operate. Highly parallelizable routines have been implemented in a first-principle simulation code (Octopus) to be used in our tests, so that reliable conclusions about the capability of methods to tackle large systems in cluster computing can be obtained from our work.


Assuntos
Algoritmos , Química/métodos , Distribuição de Poisson , Teoria Quântica , Simulação por Computador
6.
J Phys Condens Matter ; 24(23): 233202, 2012 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-22562950

RESUMO

Octopus is a general-purpose density-functional theory (DFT) code, with a particular emphasis on the time-dependent version of DFT (TDDFT). In this paper we present the ongoing efforts to achieve the parallelization of octopus. We focus on the real-time variant of TDDFT, where the time-dependent Kohn-Sham equations are directly propagated in time. This approach has great potential for execution in massively parallel systems such as modern supercomputers with thousands of processors and graphics processing units (GPUs). For harvesting the potential of conventional supercomputers, the main strategy is a multi-level parallelization scheme that combines the inherent scalability of real-time TDDFT with a real-space grid domain-partitioning approach. A scalable Poisson solver is critical for the efficiency of this scheme. For GPUs, we show how using blocks of Kohn-Sham states provides the required level of data parallelism and that this strategy is also applicable for code optimization on standard processors. Our results show that real-time TDDFT, as implemented in octopus, can be the method of choice for studying the excited states of large molecular systems in modern parallel architectures.


Assuntos
Computadores , Teoria Quântica , Software , Benzeno/química , Gráficos por Computador , Modelos Moleculares , Conformação Molecular , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...